敗血症性 AKI の病態生理と臨床における課題

Pathophysiology and clinical challenges of septic acute kidney injury

安田日出夫^{*1} 辻 孝之^{*1} 辻 尚子^{*1} 山本龍夫^{*2} Hideo YASUDA, Takayuki TSUJI, Naoko TSUJI, and Tatsuo YAMAMOTO

はじめに

わが国における腎代替療法を要する急性腎障害(acute kidney injury: AKI)のうち40%が敗血症性AKIで最も多く、その院内死亡率は60%である¹⁾。敗血症性AKIはAKI のなかで最重要課題であり、その病態生理の解明のために近年多く研究されてきている。

虚血や薬剤などの中毒性の AKI の主病変は尿細管壊死 と考えられてきたが,敗血症の場合はより複雑で,ショッ クや全身性炎症反応症候群(systemic inflammatory response syndrome: SIRS)として表現される全身性反応と,腎内の 炎症,血行動態変化,尿細管障害などが連鎖して AKI を形 成している。

敗血症性ショックに対しては早期の抗菌薬の投与,循環 動態安定化による組織の虚血からの保護管理が行われてい る。このようななかでの敗血症性 AKI の課題としては,診 断学や予後判定,血液浄化療法の処方法や創薬開発があげ られるだろう。

本稿では,敗血症性 AKI の動物実験から得られた病態生 理を概説するとともに,主に臨床における診断学や創薬に 関しての課題に触れる。

敗血症性 AKI の病態生理

1. 動物モデル

敗血症の動物モデルは主に3つに分類される²⁾。グラム 陰性桿菌細胞壁の外膜に存在するリポポリサッカライド (lipopolysaccharide:LPS)を投与するモデル,腸管穿孔モデ ル,そして細菌感染モデルである。それぞれ利点と欠点が 存在し、AKI での病態も異なる。LPS 投与モデルにおける AKI の病態生理は、Schrier らが The New England Journal of Medicine で秀逸な総説を発表している³⁾。しかしながら、 LPS 投与モデルはそのサイトカインプロファイルや血行動 態がヒトとは異なり、他の細菌感染モデルやヒトでの病態 とは区別して解釈する必要がある。そのため、本稿では細 菌感染モデルで得られた知見を紹介する。細菌感染モデル の代表である虫垂結紮穿孔モデル(cecal ligation and puncture : CLP)はその重症度や再現性が術者や麻酔方法、便の 量や状態などによって異なることが問題点としてあげられ ているが、術者が習熟すれば安定したモデルになる。

2. 自然免疫

敗血症では、細菌の侵入を感知する pathogen-associated molecular patterns (PAMPs)と呼ばれる分子によって炎症性 サイトカインが誘導され SIRS となる。この PAMPs が、制 御不能な炎症性メディエータを惹起させ, AKI を含めた多 臓器障害へ陥らせる。自然免疫が活性し、炎症性サイトカ インが過度に誘導されると同時に、脾臓内の炎症細胞はア ポトーシスに陥る。免疫細胞のアポトーシスは免疫抑制と 関連しており、この免疫抑制の予防が敗血症の生命予後に 重要である⁴⁾。この自然免疫の調整によって AKI を軽減す ることが可能である。PAMPs として Toll-like receptor (TLR) が知られており、同定されている 13 までの TLR のうち TLR4 欠損マウスと TLR9 欠損マウスで、それぞれ LPS 投 与モデルと CLP モデルに対して死亡率および AKI が軽減 している $5^{-7)}$ 。さらにTLR9のSmall interfering RNA (SiRNA)の投与で CLP による AKI が軽減することも報告 されている8)。

また,内因性分子もTLRが誘導する敗血症に関係しており,TLR4の内因性リガンドとして熱ショック蛋白, HMGB-1 などが知られ, damage-associated molecular patterns

^{*1} 浜松医科大学第一内科 *2 藤枝市立総合病院腎臓内科

図 1 血漿ミトコンドリア DNA (ND1, チトク ローム B, COX3)の CLP 後の動態 CLP 後 2~6 時間後ミトコンドリア DNA は血漿 中に大量に循環している。*p<0.05 ND1: NADH デヒドロゲナーゼサブユニット COX3:チトクロームオキシダーゼサブユニット3

(DAMPs)と呼ばれている。近年,DAMPsの一つとしてミ トコンドリア由来のDNAが自然免疫を活性化することが 報告され注目されている。TLR9のリガンドは細菌由来の CpGモチーフを有したDNAであることが知られているが, 内因性のミトコンドリアDNAはTLR9のリガンドとして 作用し,外傷によるSIRSを引き起こす主要なメディエー タであることが報告された⁹⁾。血中ミトコンドリアDNAは 重症な敗血症患者で検出され,集中治療室の死亡予後に関 連している^{10,11)}。われわれはマウス CLP モデルにおける血 中ミトコンドリア DNA の動態を評価した¹²⁾。ミトコンド リア DNA は CLP 早期の 2 時間後より大量に全身循環し,

少なくとも6時間までは維持されていた(図1)。ミトコン ドリア DNA を含むミトコンドリア成分をマウスに注入す ると2時間後には血中 IL-12 が増加し, 脾臓内の炎症細胞 にアポトーシスが誘導された。さらに腎尿細管のミトコン ドリア障害が惹起された(図2)。TLR9 欠損マウスでは, こ れらの全身性免疫反応および腎障害は軽減された(図2)。 このように, 敗血症性ショックで全身循環するミトコンド

リア DNA が AKI 発症にかかわっている可能性がある。

3. 血行動態(図4を参照)

敗血症性ショックでは、進行すると hyperdynamic state か ら hypodynamic state へ移行し死に至る²⁾。敗血症における 腎血流量(renal blood flow: RBF)の動態は報告によって異 なり、敗血症とRBFの関係を159の動物実験から解析した 報告では、およそ 2/3 では RBF が低下し、1/3 では変わら ないか増加し, RBFを規定する因子として心拍出量が唯一 の有意な因子であった¹³⁾。CLP モデルでは、その重症度が 報告によって異なり時間経過を揃えて1つにまとめること はできないが、AKIを生じるモデルでは、血清クレアチニ ン値は6~12時間後に上昇し始めて18~24時間後にピーク を迎えることが多く、生存曲線としては、18~24時間後よ り死亡し始め,48時間後には生存率が50%程度になる14,15) (図3)。このような CLP モデルにおいては 2 時間後まで hyperdynamic state の状態が保たれ、それ以降は脈が下がる と並行して、6~8時間後まで血圧は下がり続ける^{16,17)}。 RBFは2時間では保たれて6時間後には低下し、生体顕微 鏡で観察した皮質傍尿細管毛細血管の血流も RBF と同様 な経過を辿った¹⁷⁾。

敗血症性 AKI では, hyperdynamic state の時期にすでに GFR は低下している。このときの RBF はどうなっている かは明らかではないが, 1970 年代に, 敗血症患者で GFR

が85%へ低下している状況下でRBFが171%と増加していると報告されている¹⁸⁾。この現象でみられるように, hyperdynamic state,つまり末梢血管が拡張している状況下でRBFが保たれながらGFRが低下するメカニズムとして, 近年,輸出細動脈の血管拡張によってもたらされる糸球体 内圧の低下による輸入細動脈から輸出細動脈へのシャント が提唱されている¹⁹⁾。確かに細菌持続投与モデルに輸出細 動脈を収縮させるアンジオテンシン II を投与すると GFR が回復した²⁰⁾。この仮説は非常に興味深く,直接的に証明 ができれば大きな革新になる。

PAMPs DAMPs			
(LPS)	(mt D	NA)	
TLRs			
SIRS			
hyperdynamic			
state	\square		
(腎内シャント?)		hypodynamic state	
血圧	↓ or→	$\downarrow\downarrow$	Ļ
腎血流量	† or→	$\downarrow\downarrow$	Ļ
糸球体濾過量		$\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow\downarrow$
血清クレアチニン	\rightarrow	† or→	↑ ↑
傍尿細管毛細血管血流	\rightarrow	$\downarrow\downarrow\downarrow$	Ļ
血管透過性	Ť	Ť	† †
ミトコンドリア障害	Ť	$\uparrow \uparrow$	↑ ↑
酸化ストレス		† †	†††
	1 2	6	24 (h)
CLP手術			

図 4 CLP による AKI の病態生理

ミトコンドリア DNA が TLR9 を介して SIRS をきたす。 Hyperdynamic state で腎障害が発症する。

また, 腎内血管透過性は CLP 2 時間後より更新し¹⁷⁾, 24 時間後までさらに増加する。この腎内血管透過性が腎浮腫 や炎症と関連している可能性がある¹⁴⁾。

4. 尿細管組織障害(図4を参照)

敗血症では急性尿細管壊死は観察されず、尿細管の空胞 変性が光顕レベルの組織障害として主に敗血症後期に見ら れる^{2,14)}。この空胞変性は腫大したミトコンドリアで²¹⁾. そ の空胞内に reactive oxygen/nitrite species (ROS/RNS)が貯留 している17)ことが示唆されている。興味深いことに、生体 顕微鏡によって ROS/RNS の蓄積は傍尿細管毛細血管の微 小循環が低下している近傍の尿細管で観察されており¹⁷⁾, 腎内微小循環障害は尿細管上皮細胞のパーオキシナイトラ イト産生に寄与することが指摘されている。これらを観察 した Mayeux のグループは、CLP による AKI に対して抗酸 化剤を投与すると尿細管の酸化ストレスを軽減するととも に, 腎皮質傍尿細管毛細血管の微小循環を改善することを 報告した^{22,23)}。興味深いことに, 抗酸化剤は全身血圧には 影響を与えずに腎微小循環を改善している。これらの報告 のなかで、腎内ミトコンドリア機能の低下が CLP6 時間後 にはみられており、ミトコンドリアをターゲットとした抗 酸化剤の有効性が強調されている。この尿細管上皮細胞の ミトコンドリア障害は早期の尿細管障害として捉えられて いる。われわれは、電子顕微鏡で CLP 2 時間後の近位尿細 管でミトコンドリアが減少し膨化していることを観察して いる(図 2)。

また,全身血圧,RBFの低下に伴い尿細管は虚血に曝され,CLPでは4~6時間後には組織虚血マーカーである pimonidazoleの取り込みが検出される¹⁷⁾。腎尿細管のアポ トーシスはTUNEL染色や cleaved caspase 3 での評価ではほ とんど見られなかった²⁴⁾が,敗血症性ショックで死亡直後 の腎生検では尿細管上皮細胞の 2.9 % にアポトーシス小体 が観察されている²⁵⁾。

敗血症性 AKI の臨床における課題

1. 敗血症性 AKI の尿所見

敗血症性 AKIの尿中 Na 排泄分画率(fractional excretion of sodium: FENa)が1%以下となるのは33~100%とさまざ まで,慢性腎臓病の存在や利尿薬の有無,評価のタイミン グなどで異なってくる²⁶⁾。また,敗血症性 AKI 患者におい て尿沈渣所見を検討した報告では,尿細管上皮細胞と顆粒 円柱から算出した尿沈渣スコアは,同程度の AKI 重症度で は敗血症性 AKI のほうが非敗血症性 AKI よりも有意に高 値であった²⁷⁾。さらに,尿沈渣スコアは尿中 neutrophil gelatinase-associated lipocalin(NGAL)と正の相関を示した が,FENa とは相関を認めなかった。このように,尿沈渣 は腎実質で起きている現象を細胞レベルで把握でき,診断 や予後予測に有用である可能性があり,今後,更なる検証 が進み,実践されるべきであろう。

2. 早期診断と予後予測のための尿中バイオマーカー

AKI の診断は Kidney Disease: Improving Global Outcomes (KDIGO)診療ガイドラインに基づいて,血清クレアチニン (Cr)値と尿量の変化により行われているが,それより早期 に腎臓に障害が発生したことを検出,さらには重症度,予 後予測を可能とするバイオマーカーの研究が精力的に行わ れている。次に代表的なバイオマーカーを紹介する。

1) NGAL

NGAL は,活性化した好中球や尿細管細胞から分泌され る蛋白で,AKI 早期診断のバイオマーカーの草分けとして 当初から数多く研究されており,血中,尿中ともにAKI で 早期に増加することが知られている。敗血症のみならず, 心臓手術や造影剤腎症も含まれた患者におけるメタアナリ シスやシステマティックレビューによる検討でも,24~48 時間後の血清Crの上昇を予測するのみならず,腎代替療法 の開始や院内死亡を予測することが報告されている²⁸⁾。敗 血症では全身性の強い炎症を反映して血中 NGAL が増加 する。AKIの原因を敗血症と非敗血症で分けて比較した検討では、血中、尿中ともに敗血症性 AKI のほうが非敗血症 性 AKI より高値を示した²⁹⁾。さらに敗血症のみの患者を対 象とした AKI と非 AKI の比較では、血中 NGAL は AKI 群 で高い傾向にあったが、尿中 NGAL は有意に AKI 群で高 値を示しており、敗血症でも尿中 NGAL は AKI の早期診 断に有用である可能性がある³⁰⁾。

2) L-FABP

L-FABP(liver-type fatty acid-binding protein)は,主に肝臟, 小腸,腎臟に発現している脂肪酸結合蛋白である。近位尿 細管細胞の細胞質に豊富に存在し,傍尿細管毛細血管など の腎内微小循環障害による虚血や酸化ストレスで,尿細管 腔内に分泌される。敗血症患者のみを対象とした研究はな いが,敗血症患者を含めた最近のメタアナリシスでは, AKIの早期診断,腎代替療法の開始,院内死亡の予測に有 用であることが示されている³¹⁾。尿中 L-FABP 測定は,わ が国ではバイオマーカーとして保険収載されている。

3) IL-18

IL-18 は IL-1 ファミリーに属する炎症性サイトカイン で、単球やマクロファージ以外にも近位尿細管細胞内で caspasel の修飾を受けて産生される。最近のメタアナリシ スでは、敗血症患者を含めた対象において、尿中 IL-18 は AKI の早期診断、腎代替療法の開始、院内死亡の予測に有 用である可能性が示されているが、NGAL や L-FABP と比 較して数時間遅れて尿中で上昇してくる³²⁾。

4) KIM-1

KIM-1(kidney injury molecule 1)は健常状態では近位尿細 管細胞に発現していないが、障害が加わるとイムノグロブ リン様蛋白として刷子縁に発現し、その細胞外ドメインが 尿中に剝がれ落ちてくる。最近のメタアナリシスでは、特 に心臓手術患者において AKI の早期診断に有用である可 能性が示されている³³⁾。

5) シスタチン C

シスタチンCはシステインプロテアーゼインヒビターと して作用し,全身の有核細胞から一定量産生される。その ほぼすべてが糸球体で濾過された後,近位尿細管で再吸収 され異化される。その血中濃度は性別,年齢,筋肉量など の影響を受けにくいため,わが国では血清シスタチンCは CKD患者の糸球体濾過量の推測に用いられている。AKIで も,糸球体クリアランスの低下を反映して上昇する。また 尿細管細胞が障害を受けると再吸収や細胞内異化が低下す るため,正常ではほぼ検出できない尿中シスタチンCが検 出されることになる。2011年のメタアナリシスでは,尿中 シスタチンCよりも血清シスタチンCがAKIの早期診断 に優れていたという結果であったが、更なる検証が必要で ある³⁴⁾。

これらのバイオマーカーは単独で臨床に活かすのは難し く,それぞれの特性を活かし,組み合わせてパネル化する ことで,その精度と臨床的意義を向上させる試みがなされ ている。一方,これらのバイオマーカーの一部は48時間以 内に回復する腎前性 AKI でも軽度上昇することが指摘さ れており,結果の解釈に注意が必要である³⁵⁾。

3. フロセミド負荷試験

フロセミド投与により AKI 重症度の進展を予測する研 究が注目されている³⁶⁾。フロセミドは蛋白に結合し、糸球 体では濾過されず human organic anion transporter (hOAT)を 介して尿細管管腔内に分泌される。分泌されたフロセミド は、ヘンレの太い上行脚の Na-K-2Cl 共輸送体を阻害し、 NaやKの再吸収阻害により利尿効果を示す。フロセミド 負荷試験はフロセミドによる利尿反応を観察することで, 尿細管機能を間接的に評価し標準化しようという試みであ る。acute kidney injury network (AKIN) ステージ1 もしくは 2の腎性 AKI 患者を対象に 1.0 mg/kg(7 日以内にループ利 尿薬を使用した患者には 1.5 mg/kg)のフロセミドを静注 し、経時的に尿量を観察した。脱水にならないよう反応し た尿量分の乳酸リンゲル液か生理食塩水を6時間まで補液 した。尿量が最初の2時間で200mL未満であることは AKIN ステージ3への移行を予測した(ROC 曲線下面積 0.87, 感度 87.1%, 特異度 84.1%)。更なる検証が必要であ るが、フロセミド負荷試験で AKI ステージ進展を予測する ことで腎代替療法開始のタイミングをより適正にできるこ とが期待されている。

4. 創薬開発

敗血症治療において、動物実験では効果を認めた治療法 がヒトでは奏効しないことも多く、臨床へのトランスレー ション(bench to bedside)がうまく進んでいないのが現状で ある。過去には抗 TNFα 抗体などの炎症性サイトカインの 抑制が敗血症治療に期待されたが、失敗に終わっている³⁷⁾。

近年, TLR4 アンタゴニストである Eritoran の治験が行わ れた。重症敗血症患者や敗血症性ショックの患者を対象と した第3相試験で,28日間の生命予後を改善しなかった³⁸⁾。 抗 TNFα 抗体や TLR4 経路の阻害は LPS モデルにおいてそ の有効性が確認されているが, CLP による AKI は軽減され ていない^{14,24)}。今後の創薬開発において CLP などの細菌感 染モデルでの検証が求められる。 利益相反自己申告:申告すべきものなし

文 献

- Yasuda H, Kato A, Fujigaki Y, Hishida A. Incidence and clinical outcomes of acute kidney injury requiring renal replacement therapy in Japan. Ther Apher Dial 2010; 14(6): 541–546.
- Doi K, Leelahavanichkul A, Yuen PS, Star RA. Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest 2009; 119 (10): 2868–2878.
- Schrier RW, Wang W. Acute renal failure and sepsis. N Engl J Med 2004 ; 351(2) : 159-169.
- Hotchkiss RS, Chang KC, Grayson MH, Tinsley KW, Dunne BS, Davis CG, Osborne DF, Karl IE. Adoptive transfer of apoptotic splenocytes worsens survival, whereas adoptive transfer of necrotic splenocytes improves survival in sepsis. Proc Nat Aca Sci USA 2003; 100(11): 6724-6729.
- Cunningham PN, Wang Y, Guo R, He G, Quigg RJ. Role of Tolllike receptor 4 in endotoxin-induced acute renal failure. J Immunol 2004 ; 172(4) : 2629–2635.
- Yasuda H, Leelahavanichkul A, Tsunoda S, Dear JW, Takahashi Y, Ito S, Hu X, Zhou H, Doi K, Childs R, et al. Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury. Am J Physiol 2008; 294(5): F1050-1058.
- Plitas G, Burt BM, Nguyen HM, Bamboat ZM, DeMatteo RP. Toll-like receptor 9 inhibition reduces mortality in polymicrobial sepsis. J Exper Med 2008 ; 205(6) : 1277–1283.
- Liu L, Li Y, Hu Z, Su J, Huo Y, Tan B, Wang X, Liu Y. Small interfering RNA targeting Toll-like receptor 9 protects mice against polymicrobial septic acute kidney injury. Nep Exper Nephrol 2012 ; 122(1-2) : 51-61.
- Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010; 464(7285): 104-107.
- Nakahira K, Kyung SY, Rogers AJ, Gazourian L, Youn S, Massaro AF, Quintana C, Osorio JC, Wang Z, Zhao Y, et al. Circulating mitochondrial DNA in patients in the ICU as a marker of mortality : derivation and validation. PLoS Med 2013; 10(12): e1001577; discussion e1001577.
- Garrabou G, Moren C, Lopez S, Tobias E, Cardellach F, Miro O, Casademont J. The effects of sepsis on mitochondria. J Infect Dis 2012 ; 205(3) : 392–400.
- 辻 尚子,安田日出夫,辻 孝之,大橋 温,加藤明彦, 藤垣嘉秀. ミトコンドリア DNA は TLR9 を介して敗血症性 急性腎障害に関与する.日腎会誌 2014;56:321.
- 13. Langenberg C, Bellomo R, May C, Wan L, Egi M, Morgera S. Renal blood flow in sepsis. Crit Care (London, England) 2005; 9
 (4) : R363-374.
- Yasuda H, Yuen PS, Hu X, Zhou H, Star RA. Simvastatin improves sepsis-induced mortality and acute kidney injury via renal vascular effects. Kidney Int 2006; 69(9): 1535–1542.
- 15. Miyaji T, Hu X, Yuen PS, Muramatsu Y, Iyer S, Hewitt SM, Star

RA. Ethyl pyruvate decreases sepsis-induced acute renal failure and multiple organ damage in aged mice. Kidney Int 2003; 64 (5): 1620-1631.

- Doi K, Leelahavanichkul A, Hu X, Sidransky KL, Zhou H, Qin Y, Eisner C, Schnermann J, Yuen PS, Star RA. Pre-existing renal disease promotes sepsis-induced acute kidney injury and worsens outcome. Kidney Int 2008; 74(8): 1017–1025.
- Wang Z, Holthoff JH, Seely KA, Pathak E, Spencer HJ, 3rd, Gokden N, Mayeux PR. Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury. Am J Pathol 2012 ; 180(2) : 505–516.
- Rector F, Goyal S, Rosenberg IK, Lucas CE. Sepsis : a mechanism for vasodilatation in the kidney. Ann Surg 1973 ; 178(2) : 222-226.
- Calzavacca P, May CN, Bellomo R. Glomerular haemodynamics, the renal sympathetic nervous system and sepsis-induced acute kidney injury. Nephrol Dial Transplant 2014; 29(12): 2178– 2184.
- Wan L, Langenberg C, Bellomo R, May CN. Angiotensin II in experimental hyperdynamic sepsis. Crit Care 2009; 13(6): R190.
- Tran M, Tam D, Bardia A, Bhasin M, Rowe GC, Kher A, Zsengeller ZK, Akhavan-Sharif MR, Khankin EV, Saintgeniez M, et al. PGC-1 alpha promotes recovery after acute kidney injury during systemic inflammation in mice. J Clin Invest 2011; 121 (10): 4003-4014.
- Patil NK, Parajuli N, MacMillan-Crow LA, Mayeux PR. Inactivation of renal mitochondrial respiratory complexes and manganese superoxide dismutase during sepsis : mitochondria-targeted antioxidant mitigates injury. Am J Physiol Ren Physiol 2014 ; 306(7) : F734-743.
- Holthoff JH, Wang Z, Seely KA, Gokden N, Mayeux PR. Resveratrol improves renal microcirculation, protects the tubular epithelium, and prolongs survival in a mouse model of sepsisinduced acute kidney injury. Kidney Int 2012; 81(4): 370-378.
- Dear JW, Yasuda H, Hu X, Hieny S, Yuen PS, Hewitt SM, Sher A, Star RA. Sepsis-induced organ failure is mediated by different pathways in the kidney and liver : acute renal failure is dependent on MyD88 but not renal cell apoptosis. Kidney Int 2006; 69 (5): 832–836.
- Lerolle N, Nochy D, Guerot E, Bruneval P, Fagon JY, Diehl JL, Hill G. Histopathology of septic shock induced acute kidney injury : apoptosis and leukocytic infiltration. Intensive Care Med 2010; 36(3): 471-478.
- Bagshaw SM, Langenberg C, Bellomo R. Urinary biochemistry and microscopy in septic acute renal failure : a systematic review. Am J Kidney Dis 2006 ; 48(5) : 695–705.
- Bagshaw SM, Haase M, Haase-Fielitz A, Bennett M, Devarajan P, Bellomo R. A prospective evaluation of urine microscopy in septic and non-septic acute kidney injury. Nephrol Dial Transplant 2012; 27(2): 582–588.

- Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury : a systematic review and meta-analysis. Am J Kidney Dis 2009; 54 (6) : 1012–1024.
- Bagshaw SM, Bennett M, Haase M, Haase-Fielitz A, Egi M, Morimatsu H, D'Amico G, Goldsmith D, Devarajan P, Bellomo R. Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness. Intensive Care Med 2010 ; 36(3) : 452-461.
- Martensson J, Bell M, Oldner A, Xu S, Venge P, Martling CR. Neutrophil gelatinase-associated lipocalin in adult septic patients with and without acute kidney injury. Intensive Care Med 2010; 36(8): 1333-1340.
- Susantitaphong P, Siribamrungwong M, Doi K, Noiri E, Terrin N, Jaber BL. Performance of urinary liver-type fatty acid-binding protein in acute kidney injury : a meta-analysis. Am J Kidney Dis 2013 ; 61(3) : 430–439.
- 32. Liu Y, Guo W, Zhang J, Xu C, Yu S, Mao Z, Wu J, Ye C, Mei C, Dai B. Urinary interleukin 18 for detection of acute kidney injury : a meta-analysis. Am J Kidney Dis 2013 ; 62(6) : 1058-1067.
- Shao X, Tian L, Xu W, Zhang Z, Wang C, Qi C, Ni Z, Mou S. Diagnostic value of urinary kidney injury molecule 1 for acute

kidney injury : a meta-analysis. PLoS One 2014; 9(1): e84131.

- Zhang Z, Lu B, Sheng X, Jin N. Cystatin C in prediction of acute kidney injury : a systemic review and meta-analysis. Am J Kidney Dis 2011; 58(3): 356–365.
- Doi K, Katagiri D, Negishi K, Hasegawa S, Hamasaki Y, Fujita T, Matsubara T, Ishii T, Yahagi N, Sugaya T, et al. Mild elevation of urinary biomarkers in prerenal acute kidney injury. Kidney Int 2012; 82(10): 1114–1120.
- 36. Chawla LS, Davison DL, Brasha-Mitchell E, Koyner JL, Arthur JM, Shaw AD, Tumlin JA, Trevino SA, Kimmel PL, Seneff MG. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care 2013; 17 (5): R207.
- 37. Eichacker PQ, Parent C, Kalil A, Esposito C, Cui X, Banks SM, Gerstenberger EP, Fitz Y, Danner RL, Natanson C. Risk and the efficacy of antiinflammatory agents : retrospective and confirmatory studies of sepsis. Am J Resp Crit Care Med 2002; 166(9): 1197–1205.
- 38. Opal SM, Laterre PF, Francois B, LaRosa SP, Angus DC, Mira JP, Wittebole X, Dugernier T, Perrotin D, Tidswell M, et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis : the ACCESS randomized trial. JAMA 2013 ; 309(11) : 1154-1162.